Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Annu Rev Nutr ; 42: 67-89, 2022 08 22.
Article in English | MEDLINE | ID: covidwho-2001923

ABSTRACT

The COVID-19 pandemic demonstrates that obesity alone, independent of comorbidities, is a significant risk factor for severe outcomes from infection. This susceptibility mirrors a similar pattern with influenza infection; that is, obesity is a unique risk factor for increased morbidity and mortality. Therefore, it is critical to understand how obesity contributes to a reduced ability to respond to respiratory viral infections. Herein, we discuss human and animal studies with influenza infection and vaccination that show obesity impairs immunity. We cover several key mechanisms for the dysfunction. These mechanisms include systemic and cellular level changes that dysregulate immune cell metabolism and function in addition to how obesity promotes deficiencies in metabolites that control the resolution of inflammation and infection. Finally, we discuss major gaps in knowledge, particularly as they pertain to diet and mechanisms, which will drive future efforts to improve outcomes in response to respiratory viral infections in an increasingly obese population.


Subject(s)
COVID-19 , Influenza, Human , Animals , Humans , Immunity , Influenza, Human/prevention & control , Obesity , Pandemics , Vaccination
2.
Biofactors ; 47(1): 6-18, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-950385

ABSTRACT

Specialized proresolving mediators (SPMs) are endogenous lipid metabolites of long-chain polyunsaturated fatty acids that are involved in promoting the resolution of inflammation. Many disease conditions characterized by excessive inflammation have impaired or altered SPM biosynthesis, which may lead to chronic, unresolved inflammation. Exogenous administration of SPMs in infectious conditions has been shown to be effective at improving infection clearance and survival in preclinical models. SPMs have also shown tremendous promise in the context of inflammatory lung conditions, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease, mostly in preclinical settings. To date, SPMs have not been studied in the context of the novel Coronavirus, severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), however their preclinical efficacy in combatting infections and improving acute respiratory distress suggest they may be a valuable resource in the fight against Coronavirus disease-19 (COVID-19). Overall, while the research on SPMs is still evolving, they may offer a novel therapeutic option for inflammatory conditions.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Docosahexaenoic Acids/therapeutic use , Lipoxins/therapeutic use , Lung Injury/drug therapy , Pulmonary Disease, Chronic Obstructive/drug therapy , Respiratory Distress Syndrome/drug therapy , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Herpes Simplex/drug therapy , Herpes Simplex/metabolism , Herpes Simplex/pathology , Humans , Influenza, Human/drug therapy , Influenza, Human/metabolism , Influenza, Human/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung Injury/metabolism , Lung Injury/pathology , Lung Injury/virology , Periodontitis/drug therapy , Periodontitis/metabolism , Periodontitis/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/virology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/pathogenicity , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/pathology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL